The National Institute of Allergy and Infectious Diseases (NIAID) which is part of the National Institutes of Health (NIH), has awarded 12 institutes, with grants towards phage therapy research. The $2.5 million in grants are the first in NIAID’s series of grants that exclusively target research towards this type of therapy.
“In recent decades, multidrug-resistant bacteria, particularly those that cause potentially deadly diseases like tuberculosis, have become a serious and growing global public health concern,” said NIAID Director Anthony S. Fauci, M.D. “With these awards, NIAID is supporting the research needed to determine if phage therapy might be used in combination with antibiotics or replace them altogether in treating evolving antibiotic-resistant bacterial diseases”.
Grants towards phage therapy research
NIAID’s grants support research into the development of phages as both preventative and therapeutic approaches against bacterial infections.
Basic research supported by these grants includes; a study characterizing different types of phages, a project studying how phages combat biofilms, and research to determine how to identify new, potentially useful phages.
Translational research supported by these grants includes; the study of how to exploit the interaction between phages and bacteria in order to create lasting, re-useable therapeutics, and engineering viruses in order to target and combat Staphylococcus bacteria.
12 recipients of NIAID’s grants
University of Pittsburgh
Principal Investigator: Graham F. Hatfull, Ph.D.
Phage resistance in Mycobacterium tuberculosis
PhagePro, Inc. (Boston)
Principal Investigators: Minmin Yen, Ph.D., MPH, and Andrew Camilli, Ph.D.
Targeting antibiotic resistance genes in Vibrio cholerae using a phage-encoded CRISPR-Cas system to improve the efficacy of phage prophylaxis
University of Connecticut (Storrs)
Principal Investigator: Simon White, Ph.D.
Characterization of long-circulating phages isolated from in vivo mouse studies
Georgia Institute of Technology (Atlanta)
Principal Investigator: Samuel Paul Brown, Ph.D.
Building re-usable phage and antibiotic treatments via exploitation of bacteria-phage co-evolutionary dynamics
University of Wisconsin-Madison
Principal Investigator: Srivatsan Raman, Ph.D.
Understanding molecular rules governing bacteriophage specificity and virulence by high-throughput mutational and metagenomic scanning
Texas A&M Agrilife Research (College Station)
Principal Investigators: Lanying Zeng, Ph.D., Junjie Zhang, Ph.D.
Reducing virulence through the suppression of retractile pili
Queens College, City University of New York
Principal Investigator: John Joseph Dennehy, Ph.D.
Novel strategies for treating biofilm-forming pathogens with phage therapy
Harvard School of Public Health (Boston)
Principal Investigator: Eric J. Rubin, M.D., Ph.D.
Using genetics and multi-scale imaging to understand the mechanisms underlying mycobacteriophage host choice
Guild Associates, Inc. (Dublin, Ohio)
Principal Investigator: Ian Fleming, Ph.D.
Optimized methods for isolation and characterization of bacteriophage by VT-FACS
Geneva Foundation (Tacoma, Washington)
Principal Investigator: Yoann Stephane Le Breton, Ph.D.
A platform for genome mining of multidrug-resistant pathogens to develop therapeutic phages using synthetic biology
University of Alabama at Birmingham
Principal Investigator: Terje Dokland, Ph.D., and Asma Hatoum, Ph.D.
Engineering picoviruses with defined host range to combat drug-resistant Staphylococci
Albert Einstein College of Medicine (New York)
Principal Investigator: William Robert Jacobs Jr., Ph.D.
TB phage therapy: Optimizing delivery methods of mycobacteriophages to target intracellular Mycobacterium tuberculosis